
CIS 4004: JavaScript – Part 2 Page 1 © Dr. Mark Llewellyn

CIS 4004: Web Based Information Technology

Spring 2011

Introduction To JavaScript – Part 2

Department of Electrical Engineering and Computer Science

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cis4004/spr2011

CIS 4004: JavaScript – Part 2 Page 2 © Dr. Mark Llewellyn

• In the examples from part 1 of the JavaScript notes, the scripts
were triggered automatically. In other words, the visitor
didn’t need to do anything for the script to execute.

• These were “automatically triggered” scripts. Sometimes you
do not want the script to run until the visitor does something to
trigger it. For example, you might want to run a script when
the visitor mouses over a particular image or link, or when a
page is loaded.

• These actions – mousing over or loading a page – are called
intrinsic events.

• There are currently 18 predefined intrinsic events you can use
as triggers to determine when a script will run. The table on
the next couple of pages list these intrinsic events and which
elements they work with.

Triggering A Script

CIS 4004: JavaScript – Part 2 Page 3 © Dr. Mark Llewellyn

Event Works With When

onblur
<a>, <area>,<button>,<input>,

<label>, <select>, <textarea>

The visitor leaves an element that was previously in

focus (see onfocus below).

onchange <input>, <select>, <textarea>
The visitor modifies the value or contents of the

element.

onclick

All elements except <applet>,

<base>, <basefont>,
,

, <frame>, <frameset>,

<head>, <html>, <iframe>,

<meta>, <param>, <script>,

<style>, <title>

The visitor clicks on the specified area.

ondblclick Same as for onclick The visitor double clicks the specified area.

onfocus
<a>, <area>,<button>,<input>,

<label>, <select>, <textarea>

The visitor selects, clicks, or tabs to the specified

element.

onkeydown
<input> (of type name or password),

<textarea>

The visitor types something in the specified

element.

onkeypress
<input> (of type name or password),

<textarea>

The visitor types something in the specified

element.

onkeyup
<input> (of type name or password),

<textarea>

The visitor lets go of the key after typing in the

specified element.

Table of Intrinsic Events

CIS 4004: JavaScript – Part 2 Page 4 © Dr. Mark Llewellyn

Event Works With When

onload <body>, <frameset> The page is loaded in the browser.

onmousedown Same as for onclick
The visitor presses the mouse button down over

the element.

onmousemove Same as for onclick
The visitor moves the mouse over the specified

element after having pointed at it.

onmouseout Same as for onclick
The visitor moves the mouse away from the

specified element after having been over it.

onmouseover Same as for onclick The visitor points the mouse at the element.

onmouseup Same as for onclick
The visitor lets the mouse button go after having

clicked on the element.

onreset form (not input of type reset) The visitor clicks the form’s reset button.

onselect
<input> (of type name or password),

<textarea>

The visitor selects one or more characters or words

in the element.

onsubmit form (not input of type submit) The visitor clicks the form’s submit button.

onunload <body>, <frameset>
The browser loads a different page after the

specified page had been loaded.

Table of Intrinsic Events (continued)

CIS 4004: JavaScript – Part 2 Page 5 © Dr. Mark Llewellyn

Using An Intrinsic Event – onclick

CIS 4004: JavaScript – Part 2 Page 6 © Dr. Mark Llewellyn

Using An Intrinsic Event – onclick

After user clicks link

CIS 4004: JavaScript – Part 2 Page 7 © Dr. Mark Llewellyn

Using An Intrinsic Event – onmouseover

CIS 4004: JavaScript – Part 2 Page 8 © Dr. Mark Llewellyn

Using An Intrinsic Event – onmouseover

After user clicks anywhere

In paragraph

CIS 4004: JavaScript – Part 2 Page 9 © Dr. Mark Llewellyn

Using An Intrinsic Event – onmousedown

CIS 4004: JavaScript – Part 2 Page 10 © Dr. Mark Llewellyn

Using An Intrinsic Event – onmousedown

After user moves mouse into the

box and presses any mouse button

CIS 4004: JavaScript – Part 2 Page 11 © Dr. Mark Llewellyn

• You can associate a button with a script to give your
visitor full control over when the script should be
executed.

• As we did earlier, you simply create a button, then
associate a script with the onclick intrinsic event.
You can use any intrinsic event with a button, but
onclick makes the most sense.

• You can also add images to buttons. Simply insert
the image between the opening and closing button
tags.

• The example on the next page illustrates using a
button to trigger a script.

Creating A Button To Trigger A Script

CIS 4004: JavaScript – Part 2 Page 12 © Dr. Mark Llewellyn

Creating A Button To Trigger A Script

The three

different lines

show different

versions of the

button – try all

three of them.

CIS 4004: JavaScript – Part 2 Page 13 © Dr. Mark Llewellyn

Creating A Button To Trigger A Script

Using first line Using second line Using third line

CIS 4004: JavaScript – Part 2 Page 14 © Dr. Mark Llewellyn

Creating A Button To Trigger A Script

Window when script executes

CIS 4004: JavaScript – Part 2 Page 15 © Dr. Mark Llewellyn

• Throughout the semester we have always validated our
XHTML documents against the strict data type definition
(Strict-DTD) to ensure that our XHTML documents were
well-formed.

• Some JavaScript statements contain symbols such as the less-
than symbol (<), the greater-than symbol (>), and the
ampersand (&). As you become a more sophisticated
JavaScript programmer, you will begin to use many of the
features contained in the JavaScript language and will
undoubtedly encounter the need to use these symbols.
Unfortunately, these symbols can prevent XHTML documents
from passing validation (particularly under the Strict-DTD).

– Note that there is less of a problem with this when using
the Transitional-DTD, but we do not want to relax our
standards.

Writing Valid JavaScript Code

CIS 4004: JavaScript – Part 2 Page 16 © Dr. Mark Llewellyn

• This is not a problem at all when using HTML, because any
statements inside a <script> element are interpreted as
character data instead of markup.

– A section of a document that is not interpreted as markup is
referred to as character data, or CDATA.

• If you were to validate an HTML document that contained a
<script> element, the document would validate
successfully because the validator would ignore the script
section and not attempt to interpret the text and symbols in the
JavaScript statements as HTML or attributes.

Writing Valid JavaScript Code

CIS 4004: JavaScript – Part 2 Page 17 © Dr. Mark Llewellyn

• In contrast, with XHTML documents, the statements
in a <script> element are treated as parsed
character data, or PCDATA, which identifies a
section of a document that is interpreted as markup.

• This means that if you attempt to validate an
XHTML document that contains a <script>
element, it may fail to validate.

– Note that an XHTML document will not necessarily fail to
validate under Strict-DTD just because it contains a
<script> element. In fact, any of the examples that
have appeared in the JavaScript notes thus far, will validate
successfully. However, the right sequence of symbols
inside the <script> element may cause the document
not to validate.

Writing Valid JavaScript Code

CIS 4004: JavaScript – Part 2 Page 18 © Dr. Mark Llewellyn

• To avoid this potential problem, you can do one of
two things.

• One option is to move all JavaScript code into an
external file with a .js extension (i.e., create a
JavaScript library file) as we saw in Part 1 and will
see in more detail later in this section of notes. This
of course prevents the validator from attempting to
parse the JavaScript statements.

• The second option, and will be a requirement for
embedded JavaScript, is to enclose the JavaScript
within a <script> element within a CDATA
section.

• The next page illustrates this technique.

Writing Valid JavaScript Code

CIS 4004: JavaScript – Part 2 Page 19 © Dr. Mark Llewellyn

• The syntax for a CDATA section of an XHTML document is
as follows:

/* <!--[CDATA [*/

statements to mark as CDATA

/*]] --> */

• Note that the block comments on the opening and closing
portions of the CDATA section prevent the JavaScript
interpreter from attempting to parse the <!--[CDATA[and
]]--> lines as JavaScript!

• The example on the following page illustrates a CDATA
section in an XHTML document. From here on, for
embedded JavaScript we’ll use this format to ensure
validation.

Writing Valid JavaScript Code

CIS 4004: JavaScript – Part 2 Page 20 © Dr. Mark Llewellyn

Writing Valid JavaScript Code

If you remove the CDATA

section this document will not

validate against the Strict DTD.

CIS 4004: JavaScript – Part 2 Page 21 © Dr. Mark Llewellyn

Writing Valid JavaScript Code

CIS 4004: JavaScript – Part 2 Page 22 © Dr. Mark Llewellyn

• As we saw in Part 1 of the JavaScript notes, it is quite
common to create a library (a file) of JavaScript scripts which
provides any of your Web pages access to the scripts without
having to repeat the writing of the scripts in either the head or
body sections of each document.

• Unless the JavaScript code you intend to use in a document is
very short or specific to only one page, it is usually preferred
to place the scripts in a library file for the following reasons:

– Your document will be neater. Lengthy JavaScript code in
a document can be confusing and makes understanding
(“reading”) and maintaining the XHTML that more
difficult. You might not be able to tell at a glance where
the XHTML code ends and the JavaScript code begins.

Creating A JavaScript Library

CIS 4004: JavaScript – Part 2 Page 23 © Dr. Mark Llewellyn

– The JavaScript code can be shared among multiple Web
pages. For example, an e-commerce site may contain
several pages that allow a user to order an item. Each such
page displays a different item but can use the same
JavaScript code to gather order information. Instead of
recreating the JavaScript order information code within
each document, the various pages can share a central
JavaScript source file. Sharing a single source file reduces
the requirements for disk space and reduces system
overhead since only one copy of the same code needs to be
in memory.

– JavaScript libraries hide JavaScript code from incompatible
browsers. If your document contains JavaScript code, an
incompatible browser displays that code as if it were
standard text. In contrast, if the code is contained in a
library, the incompatible browser simply ignores it.

Creating A JavaScript Library

CIS 4004: JavaScript – Part 2 Page 24 © Dr. Mark Llewellyn

• While JavaScript libraries are quite common, it is

also quite common to see both libraries and

embedded JavaScript code in Web documents, so you

need to be familiar with both forms.

• Recall that the <script> tag can appear within the

<head> tag and/or the <body> tag.

• As we will see in the next section of notes, the more

common form of a script to be included in a library is

a function. The following example illustrates the

effect of using a JavaScript library without functions.

Creating A JavaScript Library

CIS 4004: JavaScript – Part 2 Page 25 © Dr. Mark Llewellyn

A JavaScript Library

(page 1)

Remember that a JavaScript
library has a “.js” file

extension

CIS 4004: JavaScript – Part 2 Page 26 © Dr. Mark Llewellyn

A JavaScript Library

(page 2)

CIS 4004: JavaScript – Part 2 Page 27 © Dr. Mark Llewellyn

Execution Using A JavaScript Library

This sample XHTML document does nothing except load and run the scripts in the
JavaScript library named myscriptlibrary2.js

CIS 4004: JavaScript – Part 2 Page 28 © Dr. Mark Llewellyn

Execution of SCRIPT #1

Execution of SCRIPT #2

Execution of SCRIPT #3

Execution of SCRIPT #4

